a2 United States Patent

Fanning et al.

US009190124B2

10) Patent No.: US 9,190,124 B2
(45) Date of Patent: Nov. 17,2015

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

MULTI-LEVEL. MEMORY WITH DIRECT
ACCESS

Inventors: Blaise Fanning, Folsom, CA (US);
Shekoufeh Qawami, El Dorado Hills,
CA (US); Raymond S. Tetrick,
Portland, OR (US); Frank T. Hady,
Portland, OR (US)

Assignee: INTEL CORPORATION, Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 156 days.

Appl. No.: 13/993,695

PCT Filed: Dec. 29,2011

PCT No.: PCT/US2011/067824

§371 (D),
(2), (4) Date: Jun. 13,2013

PCT Pub. No.: W02013/101050
PCT Pub. Date: Jul. 4, 2013

Prior Publication Data

US 2013/0339572 Al Dec. 19, 2013

Int. Cl.
GO6F 12/00 (2006.01)
G1IC 7/10 (2006.01)
GO6F 12/02 (2006.01)
(Continued)
U.S. CL
CPC G11C 7/1006 (2013.01); GO6F 12/023

(2013.01); GO6F 12/0238 (2013.01); GO6F
12/08 (2013.01); GOGF 12/10 (2013.01); G11C
16/00 (2013.01); GOGF 2212/205 (2013.01);
GO6F 2212/2024 (2013.01);

(Continued)

(58) Field of Classification Search
CPC ... GO6F 12/0238; GOG6F 12/023; GO6F 12/08;
GOG6F 12/10; GO6F 12/1009
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,870,363 B2 1/2011 Tang et al.
2011/0153908 Al 6/2011 Schaefer et al.
2013/0024602 Al* 1/2013 Sauberetal. ... 711/103

FOREIGN PATENT DOCUMENTS

WO 2013/101050 Al 7/2013
OTHER PUBLICATIONS

International Search Report and Written Opinion received for Inter-
national Application No. PCT/US2011/067824, mailed on Aug. 30,
2012, 9 pages.

(Continued)

Primary Examiner — Shawn X Gu

(74) Attorney, Agent, or Firm — Kacvinsky Daisak Bluni
PLLC

(57) ABSTRACT

Embodiments of a method, device, and system for imple-
menting multi-level memory with direct access are disclosed.
In one embodiment, the method includes designating an
amount of a non-volatile random access memory (NVRAM)
in a computer system to be utilized as a memory alternative
for a dynamic random access memory (DRAM). The method
continues by designating a second amount of the NVRAM to
be utilized as a storage alternative for a mass storage device.
Then the method re-designates at least a first portion of the
first amount of NVRAM from the memory alternative desig-
nation to the storage alternative designation during operation
of'the computer system. Finally, the method re-designates at
least a first portion of the second amount of NVRAM from the
storage alternative designation to the memory alternative des-
ignation during operation of the computer system.

36 Claims, 14 Drawing Sheets

Near Memory 300

Centraf
Processar

Graphics
Processor

Sayae) AAP-uo

{003 Ao

N
=
=]

1/0 Controllers

r
[}
]
T
[}
[}
[}

]
1
l
512bit E :
l
1

|
|
|
|
|
|
|
|
C

WYHAN

32bit

E

NYHAN

Disk ar SSD

106

Other 1/0

Device
108

US 9,190,124 B2

Page 2

(51) Int.ClL (56) References Cited

GO6F 12/10 (2006.01)

G11C 16/00 (2006.01)

GO6F 12/08 (2006.01) OTHER PUBLICATIONS

G1IC 11/56 (2006.01) International Preliminary Report on Patentability received for Inter-
(52) US.CL national Application No. PCT/US2011/067824, mailed on Jul. 10,

CPC ..o GO6F 2212/7201 (2013.01); GO6F

2212/7204 (2013.01); G11C 11/56 (2013.01);

YO02B 60/1225 (2013.01)

2014, 6 pages.

* cited by examiner

U.S. Patent Nov. 17, 2015 Sheet 1 of 14 US 9,190,124 B2

=<

DRAM DRAM DRAM DRAM

i
o
=i

&
=

Disk oy 85D
4]
Other /O
Device
0

o~N
Memory Control §|

FiG. 1

. [
On-die Caches ;j|

1%
S
i
£x
e — frany
fo— £ - O
Egc} ?gw éﬁ|
dadlavo|®
g gl = g-|0
L0 G =
a. [«

U.S. Patent Nov. 17, 2015 Sheet 2 of 14 US 9,190,124 B2

)

o~

NVRAM | NVRAM

fn]

a4 Sy
o 0 a = Q
o 2L«
o = {3
a [

- oN
Memory Control M|
™

FiG. 2

. o
On-die Caches :|

104

o
L

/0 Controllers

Central
Processor
0
Graphics
Processor
0

US 9,190,124 B2

Sheet 3 of 14

Nov. 17, 2015

U.S. Patent

¥0T

548}{0J3UBT O/

- faa]
On-die Caches ;jl

70t
JOS58304d
saydein

00t
105530044
J2IUDD

£ 'O
80T
a04ha(g
O/ 19410
A
IS5 40 51
70T AIDLUEBIA] JB4 “
|
Z _
S !
zZ "Nﬂ
= HgZE I
3 E
= | E
z |
IIIIIIIIIIIIIIII L | m
r————————- 1 £
| | &
| = | =
_ = _
I = Haqers |
“ [
e |
| OO Mowopdean |

US 9,190,124 B2

Sheet 4 of 14

Nov. 17, 2015

U.S. Patent

o
3
<

P DI

BOT
2MAR(Q

O/1 3310

90T
ass 4o

NVRAM

0 AR GINDS

T ABAA GINPO

NVRAM

Hqge

7 ABM GINPS

£ ARPA GINTO

¥ A2pA QAP

S AZPA GIAPO

9 AZMA BIATY

DRAM

ACUWBIN X49 GINF9

o~
ot
s

Memory Control

yor
S4B|JOIUOT O/

On-die Caches gl

I05S3004
soidess

407
105523054

I,

US 9,190,124 B2

Sheet 5 of 14

Nov. 17, 2015

U.S. Patent

850

95v9

9 'DH

[E)
WYHAN

1O UDILIOG AJBUIBIN

AVHAN

40 Usilod 28ei015

(o]
v
=

Memaory Control

Storage Control §|

soeds ydd 4oy

ooeds ¥g1 9908

990

957

455

705
WvyQ moT

w0
{21eAld) AICWSIA X459

ogs
WYY YBIH

US 9,190,124 B2

Sheet 6 of 14

Nov. 17, 2015

U.S. Patent

a0

T-85%
g9r

1-89%9

L5

009
WYHAN
10 UDIHO ADuIBpy

A

WYHAN
10 UOIIG a8ri01g

¢

0 30YdSa Aowaiy

]

T 3ovdsg Ao

T-WT 30vdsa Aowapy

D07 dewsy Asowap

N

0L
31807 |OAUDD BHEMPIEH

0 20vdsg ofesoig

1 33vdsQ 9881018

r

T-INST 30v4SQ eBeiolg

70L deuiny 28ei01g

[lll!;.llll

30eds Ydd go%

LI
21801
JBAUG
BIRMUOS

US 9,190,124 B2

Sheet 7 of 14

Nov. 17, 2015

U.S. Patent

8 "D

| 0 F0vdsg Adowopy | e
/ I

T AD¥d50 ADWR

S0

zoeds Ydd 409

|

!

|

|

|

|

T-NT 30vdsO Atoway | "
007 deway Alowsiy /
I

ww @y @ m—m—m—e— —_——— 0L
T J1B077 JOSRUOT] BiEMBIEH 3180
808 ABALIC
azedg ; e W BUBMPOS

WweanAyg L ! _
0 30vdsq 2921035 ! _
T 3av4sq s8eioig ! "

aneds yg1 4908

w180l

T-NGT 30V45] sdeiclg P
|

707 dewisy ofesoig

US 9,190,124 B2

Sheet 8 of 14

Nov. 17, 2015

U.S. Patent

6 'Did

716
"BIRp SABTBS SSa0id Jash

718
‘uiede
BAIIIE 58 553004d B SYIBI SO

[
PR3 dUIoD SRY JOSURE SUl
1B SO SYL SULIOUL Jealp 98eu01g

806
7 PUB A K SBNIEA U3IM DGR YT U
sanjea uaaino Fupseidas ‘o pue ‘g
“y 40y shaluod wolueyd sadusyd

pue 7 pue ‘A ‘¥ Jog Suiddeus eoiasp

-03-3884035 s3senbas seap sdeicis

906
7 pue ‘g Yy se8ed Alowaw
1EsiSAYd 01 7 pue ‘A Y OBe4D1S WO
BIED SAOW 0} JoAlp 5881035 syse
PUE SUCIIBISURIL YENDII SiBeM SO

706
SO BYLAG PR
St s$B00d 4BSH) CIBYNG 48N S1y
017 pue ‘A ‘¥ sassaippe a8eiols
W04 21D SADW 01 S $Y4SE SS3001d

706
{saded
SSRUPPE B0IABP WYHG) O pue
‘g ¢ seded Ajowsu jeoisAyd o1
aneds 4asn wody sietuiod sdew pue
wrda 1esAud uy sefed ¢ sasu 50

%

006
5301018 BHIL|OA-LOU LWIDA
pBR Y20|0-€ 10§ SO WO IDyng
sied-¢ ss130)R 599204d 4850

US 9,190,124 B2

Sheet 9 of 14

Nov. 17, 2015

U.S. Patent

2oedg

uiopieyd o

afed dew

0t

5SRIPPY WolLEY]

7007
goedsg

2001
00 28ed 2244

safed POUED|D 40 WRILLS

9id

afed

paddew 32
ooeds woaueyd
0} 2181 3L

00T
21807 uswadeuepyy

IIIII BUDEI/IBHNY 1A

3001
JB4ng S1M

©

010t
An8o7

Supesy R

ofeq

300
o064 98k ALitg

US 9,190,124 B2

Sheet 10 of 14

Nov. 17, 2015

U.S. Patent

11514

Z11T
‘HGE)BAR
AJIUB J13HNG B1LM BYL BRI

t

01l
"3{QEL 5504008
wiojueyd v isjuod AUpopw

i

8011
33ed 224 O] J9lNY
LA LIOLL SBLIUS DUIAR

t

\ 4

2011
1o0d
344 Ui o8ed 334 IXSU puUl4

vOTT
‘a3ed SO
PIO UGS, BIED BAIKD D134

2017
cpleA e
28e4d

001Y
paysti o
o1 spoau afed Jayng S1UAN

US 9,190,124 B2

Sheet 11 of 14

Nov. 17, 2015

U.S. Patent

<1 '5id

ViZL
13UIC4 8844 BN

44
IOLUCKY
BH4RIL AIDWIDIA

[OCT
{00 88d a4

ALg

A

23eJ035/5014 10N ~ 1T
AlOWisy/=244 10N — 0T
ues[) ICN/eald ~ 10
UEDI3/9344 — 00

:a8ed sod sug om],

aoct
sjqe) snieis o884 SDd

OTot
B0
gurues| o8ey

L/

e N
1004 aded 9944
paues|y

9071
sa8ed 9944
paUed|3-10N
0} I31HOd

20401
safed aodd
pauEs|D
AW EMTHR

US 9,190,124 B2

Sheet 12 of 14

Nov. 17, 2015

U.S. Patent

a3e4 o344 paddep man 4:_.

Z8ed AJOWDIN POIBIBIA MBN T

007 deway Arowap

5824 9884015 JU3LND ll_.

sded pERI0LS PRGN MBN _

N
I~
[
&
o
[«
(9]
[s13]
o
<
i
wy

IBHNG SHIAA

DT @2UBanjuf §o aseyds 801 siempiey dems

OOET 80tT

o130 /L
asempuiel demg
sBeicis/Aowiapy

PaEl
a8ey

1004 234

|
|
i
|
|
|
| 2801015/8804 30N - TT
“ Alowian /3344 10N —- 0T
I Ues) JION/O0I4 ~ 10
| uee|/e0ld - 00
“ 2fed Jod sug omy
|

I ZOET

m“m_rﬁ snieis afed IWYHAN

US 9,190,124 B2

Sheet 13 of 14

Nov. 17, 2015

U.S. Patent

1 Ol
£ suElg p aue|d £ aueig t sueld
. Y . | "y
i £
vy £y £y
LY
Y | - < <t
o YT 7L oy 8071 oy EIvig
- 12pIO SUDIHSURIL 5335900y
[p;n:qc\ 7 1 2 oy LRI
psziwindo v peziuindQ v JORIB-§0-1NG
Zaugld T sueyd 7 aued T sueyd
Foa SN Fenad SNOd
£ sueld 7 ouBg € sueld ¥ ousid
€L
, v . e
Gy £V £V
i
£y | - > -
- TOPT 4l Y\E 7091 \ ov T
— 0PI oy suGisuel] <y S255200Y
by 55320y | augld | augld
. 7y - - v - _
fBpuRlg 0 W/o_k piepuels —A 1opio-uy
7 sueld 1 ausg 7 sueld 1 auslg

32ABC SN

SUAS({ 5N3d

US 9,190,124 B2

Sheet 14 of 14

Nov. 17, 2015

U.S. Patent

aueds wsy

ST 514

Ysel4
5419

{si@aiasg
oft

9reT I/

_

AN NdD
878Y
sopds WK
\- AN NdD
975t
NYYAN

[OAHOT INYHAN

sizydepy 0of1 N

OIU0T wasAsgns off
AJDWIBYY BRI
wasAsgng EOEmE/ vist 1oy suioH i
805T ~ \ AN 7~ 5097
SY3EJ NdD SUIED NdD

zoEds Wapy
WA O1dD
VISt
Ioeds WD
\- WA NdD
[a4))

{(s¥@107 Ndo

{s}=4023 Nd2

vost \

afexned 30§

/ 2051

AIOUIB OJ1IBI0A

3151 k

0057 k

rESL

US 9,190,124 B2

1
MULTI-LEVEL MEMORY WITH DIRECT
ACCESS

FIELD OF THE INVENTION

The invention relates to implementing a multi-level
memory subsystem with direct non-volatile access.

DESCRIPTION OF THE RELATED ART

Phase-Change Memory and Switch (PCMS) is a non-vola-
tile storage technology under development as a successor to
the NAND non-volatile storage ubiquitous in today’s solid
state storage devices. PCMS ofters much higher performance
than NAND flash and in fact begins to approach the perfor-
mance points of the Dynamic Random Access Memory
(DRAM) currently used as primary dynamic storage in most
client computing devices. While PCMS storage may initially
be more expensive per-bit than NAND storage, that relation-
ship is forecasted to change over time until, eventually, PCMS
is less expensive than NAND.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description and accompanying drawings are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 illustrates an embodiment of a typical computer
system.

FIG. 2 illustrates an embodiment of a simple two-level
memory implementation in a computer system.

FIG. 3 illustrates an embodiment of a multi-level memory-
based system with a dynamic random access memory being
utilized as a cache for a non-volatile random access memory.

FIG. 4 illustrates an embodiment of a multi-level memory-
based system that accounts for specialized usage of a portion
of the dynamic random access memory cache.

FIG. 5 illustrates the lower 4 GB of physical addressable
memory space for a processor.

FIG. 6 illustrates an embodiment of a dual-partitioned
non-volatile random access memory that utilizes a portion for
far memory and the other portion for storage.

FIG. 7 illustrates an embodiment of address redirection
tables that provide functionality for mapping page-granular
platform physical addresses and logical block addresses into
ever-changing pages in the physical non-volatile random
access memory devices.

FIG. 8 illustrates an embodiment of address redirection
tables to map platform physical addresses and logical block
addresses into non-volatile random access memory with no
pre-designated physically linear portion of non-volatile ran-
dom access memory for storage use memory use.

FIG. 9 is a flow diagram of an embodiment of a process to
allow non-volatile storage pages that reside in a particular
type of device to be mapped directly into a software applica-
tion’s address space.

FIG. 10 illustrates an embodiment of a PCMS page clean-
ing process using a page empty write policy.

FIG. 11 illustrates an embodiment of a process flow for the
write mechanism that writes data to PCMS pages available in
phantom address space.

FIG. 12 illustrates an embodiment of a mechanism to allow
PCMS pages to be written to efficiently from a power/perfor-
mance perspective.

FIG. 13 illustrates an embodiment of a mechanism to allow
the consistent movement of non-volatile random access
memory pages between memory and storage designations.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 14 illustrates an embodiment of a process and an
accompanying mechanism (i.e. hardware logic) to support
the process of eliminating unnecessary PCMS plane transi-
tions.

FIG. 15 illustrates an embodiment of a computing device
incorporating the multi-level memory with direct access-
based memory subsystem.

DETAILED DESCRIPTION

The combination of technologies such as PCMS non-vola-
tile storage, with the decrease in the size and the increase in
performance of transistors in integrated circuits, may allow
System-on-a-Chip (SoC) architectures to take advantage of
the opportunity to create exciting new systems while achiev-
ing new combinations of low cost, low power, and high per-
formance solutions. This advance is based on a revision to the
existing memory hierarchy that establishes a different bal-
ance between the amounts of static random access memory
(SRAM), dynamic RAM (DRAM), and non-volatile storage
deployed in a low-cost smartphone, tablet, notebook, or other
form of a mobile computing device. There are many types of
non-volatile storage, though according to many embodiments
described, non-volatile random access memory (NVRAM)
storage is utilized and is described in greater detail below.

1. Non-Volatile Random Access Memory Overview

There are many possible technology choices for NVRAM,
including phase change memory (PCM), Phase Change
Memory and Switch (PCMS) (the latter being a more specific
implementation of the former), byte-addressable persistent
memory (BPRAM), storage class memory (SCM), universal
memory, Ge2Sb2TeS, programmable metallization cell
(PMC), resistive memory (RRAM), RESET (amorphous)
cell, SET (crystalline) cell, PCME, Ovshinsky memory, fer-
roelectric memory (also known as polymer memory and poly
(N-vinylcarbazole)), ferromagnetic memory (also known as
Spintronics, SPRAM (spin-transfer torque RAM)), STRAM
(spin tunneling RAM), magnetoresistive memory, magnetic
memory, magnetic random access memory (MRAM), and
Semiconductor-oxide-nitride-oxide-semiconductor
(SONOS, also known as dielectric memory).

NVRAM has the following characteristics:

It maintains its content even if power is removed, similar to
FLASH memory used in solid state disks (SSD), and
different from SRAM and DRAM which are volatile;

it may have lower overall power consumption than volatile
memories such as SRAM and DRAM;

it may have random access similar to SRAM and DRAM
(also known as randomly addressable);

it is rewritable and erasable at a lower level of granularity
(e.g., byte level) than FLLASH found in SSDs (which can
only be rewritten and erased a “block” at a time-mini-
mally 64 Kbyte in size for NOR FLLASH and 16 Kbyte
for NAND FLASH);,

it can be used as a system memory and allocated all or a
portion of the system memory address space;

it may be capable of being coupled to the CPU over a bus
(also interchangeably referred to as an interconnect or
link) using a transactional protocol (a protocol that sup-
ports transaction identifiers (IDs) to distinguish different
transactions so that those transactions can complete out-
of-order) and allowing access at a level of granularity
small enough to support operation of the NVRAM as
system memory (e.g., cache line size such as 64 or 128
byte). For example, the bus/interconnect may be a
memory bus (e.g., a double data rate (DDR) bus such as
DDR3, DDRA4, etc.) over which is run a transactional

US 9,190,124 B2

3

protocol as opposed to the non-transactional protocol
that is normally used. As another example, the bus may
run over a bus that normally runs a transactional protocol
(a native transactional protocol), such as a PCI express
(PCIE) bus, desktop management interface (DMI) bus,
or any other type of bus utilizing a transactional protocol
and a small enough transaction payload size (e.g., cache
line size such as 64 or 128 byte); and

it also may have one or more of the following characteris-

tics:

a faster write speed than non-volatile memory/storage
technologies such as FLLASH;

very high read speeds (faster than FLASH and near or
equivalent to DRAM read speeds);

it can be directly writable (rather than requiring erasing
(overwriting with 1 s) before writing data like FLASH
memory used in SSDs); and/or

a greater number of writes before failure (more than boot
ROM and FLLASH used in SSDs).

As mentioned above, in contrastto FLASH memory, which
must be rewritten and erased a complete “block” at a time, the
level of granularity at which NVRAM is accessed in any
given implementation may depend on the particular memory
controller and the particular memory bus or other type of bus
to which the NVRAM is coupled. For example, in some
implementations where NVRAM is used as system memory,
the NVRAM may be accessed at the granularity of a cache
line (e.g., a 64-byte or 128-Byte cache line), notwithstanding
an inherent ability to be accessed at the granularity of a byte,
because cache line is the level at which the memory sub-
system accesses memory. Thus, in some embodiments, when
NVRAM is deployed within a memory subsystem, it may be
accessed at the same level of granularity as DRAM used in the
same memory subsystem. Even so, in some embodiments, the
level of granularity of access to the NVRAM by the memory
controller and memory bus or other type of bus is smaller than
that of the block size used by Flash and the access size of the
1/0O subsystem’s controller and bus.

NVRAM may also incorporate wear leveling algorithms to
account for the fact that the storage cells begin to wear out
after a number of write accesses, especially where a signifi-
cant number of writes may occur such as in a system memory
implementation. Since high cycle count blocks are most
likely to wear out in this manner, wear leveling spreads writes
across the far memory cells by swapping addresses of high
cycle count blocks with low cycle count blocks. Note that
most address swapping is typically transparent to application
programs because it is handled by hardware, lower-level soft-
ware (e.g., a low level driver or operating system), or a com-
bination of the two.

NVRAM is distinguishable from other instruction and data
memory/storage technologies in terms of its characteristics
and/or its application in the memory/storage hierarchy. For
example, NVRAM is different from:

static random access memory (SRAM) which may be used

for level 0 and level 1 internal processor caches dedi-
cated to each core within a processor and lower level
cache (LLC) shared by cores within a processor;

dynamic random access memory (DRAM) configured as a

cache internal to a processor die (e.g., on the same die as
the processor), configured as one or more caches exter-
nal to a processor die (e. g., in the same or a different
package than the processor die), or general system
memory external to the processor package; and

FLASH memory/magnetic disk/optical disc applied as

mass storage; and

w

10

15

20

25

30

35

40

45

50

60

65

4

memory such as FLASH memory or other read only
memory (ROM) applied as firmware memory (which
can refer to boot ROM, basic input/output system
(BIOS) Flash, and/or trusted platform module (TPM)
Flash).

NVRAM may be used as instruction and data storage that
is directly addressable by a processor and is able to suffi-
ciently keep pace with the processor in contrast to FLASH/
magnetic disk/optical disc applied as mass storage. Direct
addressability refers to a processor, such as a CPU or GPU,
being able to send memory requests to the NVRAM as if it
were standard DRAM (e.g., through standard memory store
and load commands). Moreover, as discussed above and
described in detail below, NVRAM may be placed on a
memory bus and may communicate directly with a memory
controller that, in turn, communicates directly with the pro-
Ccessor.

NVRAM may be combined with other instruction and data
storage technologies (e.g., DRAM) to form hybrid memories
(also known as Co-locating PCM and DRAM; first level
memory and second level memory; FLAM (FLASH and
DRAM)). Note that at least some of the above technologies,
including PCM/PCMS may be used for mass storage instead
of, or in addition to, system memory, and need not be random
accessible, byte addressable or directly addressable by the
processor when applied in this manner.

For convenience of explanation, most of the remainder of
the application will refer to “NVRAM” or, more specifically,
“PCM,” or “PCMS” as the technology selection for the non-
volatile memory. As such, the terms NVRAM, PCM, and
PCMS may be used interchangeably in the following discus-
sion. However it should be realized, as discussed above, that
different technologies may also be utilized.

2. Multi-Level Memory Overview

Multi-Level Memory (MLM) is a revolutionary change to
a PC platform topology. FIG. 1 illustrates an embodiment of
a typical computer system that comprises:

One or more central/general processors (CPUs) (100).

One or more graphics processors (102).

One or more IO controllers and their associated IO devices
(104), such as disk or solid state drive (SSD) (106) and
other input/output (I/O) device (108).

On-die caches (110) that are meant to insulate the central
processor and optionally the graphics processors from
the relatively slow DRAM memory.

A memory controller (112) that is designed to schedule
DRAM commands optimally for bandwidth and/or
latency, depending upon the system requirements at the
time.

One or more groups of DRAM storage (114), arranged
typically as 64-bit channels. Low-end computing
devices might have a single channel, while high-end
computing devices might have two or three DRAM
channels.

If a typical computing device were implemented with
double data rate 3 (DDR3) components, then the latency for a
memory read transaction, initiated by a processor, that misses
the on-die caches, might be on the order of 30 nanoseconds
(ns) from the time that the transaction was passed to the
memory controller to the time that the data was returned to the
on-die cache block (e.g., 15 ns for a DRAM page hit, 30 ns for
a DRAM page empty, 45 ns for a DRAM page miss). This
latency is often a significant driver of processor application
performance.

The peak bandwidth on a single channel of DDR3-1600
memory is 12.8 gigabytes (GB) per second. The effective
bandwidth of such a channel would typically be around 70%

US 9,190,124 B2

5

of that number. This effective memory bandwidth can play a
fundamental role in the performance of general purpose pro-
cessors and graphics processors.

In a simple form, 2-level memory can be considered a
mechanism that replaces a system’s bulk DDR DRAM stor-
age with NVRAM storage (e.g., with PCMS storage), which
is shown in FIG. 2 (i.e., NVRAM devices 200).

The solution shown in FIG. 2 could be implemented at low
cost. However, the performance, power consumption, and
reliability attributes of such a system would not be ideal and
potentially could have significant issues with certain applica-
tions that would, by their nature cause adverse power, perfor-
mance, or device-wear conditions. The latency (~50 ns) and
bandwidth (~6.4 GB/sec for reads) of a FIG. 2-like configu-
ration utilizing PCMS, for example, are far higher and lower,
respectively, than that of the DRAM (from FIG. 1) that the
PCMS devices are replacing.

Another issue specifically with PCMS that requires caution
when replacing DRAM is the sharp difference between
PCMS’ read and write bandwidth capability. With DRAM,
every memory device is capable of reading and writing data at
the same rate. PCMS cores, however, by their physical nature,
require a much longer time to write a piece of data than they
do to read a piece of data. The read/write bandwidth ratio for
PCMS is 4:1. In other words, data can be read from a PCMS
device four times faster than data can be written to that device.

Taken as a whole, a computing device writes data to vola-
tile memory (traditional DRAM) for one of three reasons:

As a temporary space used in the process of running an
application or system service. There are typically two
types of temporary space: a heap space that persists
during the lifetime of an application and one or more
stack spaces that appear and disappear in much shorter
spans.

As alonger-term storage space that lasts for the duration of
an application or of the operating system runtime on the
system.

As a DMA buffer used to stage data before it is exchanged
in some way between an [/O subsystem and a general
purpose or graphics processor. This is typically used for
communication between an information-processing
device (the CPU or GPU) and an external entity like an
end-user in the case of graphics data or the network in
the case of HTML browsing data.

At least the heap space, stack space, and DMA buffers are
temporary by definition. Temporary storage usages, such as
these, can be held in a smaller DRAM footprint with an
efficient caching that implements traditional replacement
algorithms and eliminates most traffic to and from the PCMS.
At the core of an MLM-based memory system is a large
write-back DRAM that retains recently used data, absorbs
write transactions, and allows the system substantial read-
around-write capabilities. The DRAM essentially is utilized
as a cache for PCMS.

FIG. 3 illustrates a MLM-based system with a DRAM
being utilized as a cache for a NVRAM memory. In this
example, the DRAM is called “near memory” 300 and the
NVRAM (e.g. PCMS) is called “far memory” 302. This
nomenclature is based on relative performance of the memory
(near memory generally having lower latency and higher
bandwidth than far memory). Additionally, although there are
many possible links (i.e., busses, interconnects) that may be
utilized to attach DRAM and NVRAM, in the embodiment
shown in FIG. 3, the far memory NVR AM is attached through
a32-bit wide link that comprises a single memory channel for
a given amount of NVRAM (e.g., 64 GB), and the near
memory DRAM is attached through a 512-bit wide link (po-

20

25

35

40

45

50

6

tentially a cache line of data wide) that comprises a through-
silicon via (TSV) attachment between DRAM chip and the
SoC. Thus, in different embodiments, depending upon cost,
performance, and power considerations associated with the
computing device, the DRAM may be anywhere from 64 MB
to 512 MB or more. The effectiveness of MLM is dominated
by the amount of time that a given workload or set of work-
loads “hits” the near memory cache, in light of the perfor-
mance characteristics of a near memory hit and the penalty
incurred for a far memory transaction.

A cache that is unnecessarily blind to the characteristics of
the data that it contains is often simplest to implement, but can
be sub-optimal. For that reason, the MLM architecture com-
prehends that it may be better to allocate dedicated regions of
the near memory for specific uses. FIG. 4 illustrates a MLM-
based system that accounts for specialized usage of a portion
of the DRAM cache. In FIG. 4, the 512 MB DRAM space,
instead of being managed as an eight-way cache with eight 64
MB ways, is divided in such a way that it is used as a 448 MB
7-way cache (400) with 64 MB dedicated for direct use by
graphics hardware and drivers (402).

FIG. 5 illustrates the case where the lower 4 GB of the
NVRAM has been mapped as far memory that is directly
accessible by a general purpose or graphics processor. In FIG.
4, the private GFX memory area 402 would be mapped
directly into the processor’s physical address space, poten-
tially between a high DRAM space 500 and a low DRAM
space 502. In many embodiments, a register or a BIOS-based
mechanism would be used to communicate the location to the
graphics driver on boot. After that, it would be up to the
graphics driver and controller to allocate drawing surfaces
either into the normal physical address space or into the
private GFX memory area 402 in such a way that volatile and
time-sensitive surfaces (e.g., frame buffers) are contained in
the private memory. Other non-volatile, non-time-sensitive
surfaces, such as static textures, and other non-displayable
graphics surfaces may be placed in either space, according to
performance or power implications that can be deduced by
the driver.

3. Multi-Level Memory with Direct Access (MLMD)

MLMD is a solution that retains the ability to run produc-
tivity, entertainment, and gaming applications under off-the-
shelf Microsoft® Windows® and Linux operating systems at
the same time that it removes external DRAM from the sys-
tem in favor of new forms of non-volatile storage combined
with embedded SRAM or DRAM devices.

In a handheld device or tablet, non-volatile storage will
almost always be implemented using solid state devices like
NAND or NVRAM, such as PCMS. When a device imple-
ments a MLM using NVRAM devices, it is natural to imple-
ment the entire storage system with NVRAM and it is desir-
able of course for the far memory and the storage system to
share the NVRAM devices. FIG. 6 illustrates a dual-parti-
tioned NVRAM that utilizes a portion for far memory 600 and
the other portion for storage 602. The memory portion is
indexed using a “platform-physical address” (PPA) and stor-
age is indexed using a “logical block address” (LBA). As
shown in FIG. 6, the memory control(ler)/logic 112 maps
PPA space page addresses into the memory portion of the
NVRAM 600 and a storage control(ler)/logic 604 maps LBA
space block addresses into the storage portion of the NVRAM
602. There are issues in having this simple of a mapping.
Some types of NVRAM devices, such as PCMS, have certain
defect and wear characteristics that discourage direct map-
ping of continuous addresses between the PPA/LLBA abstrac-
tions and the physical devices.

US 9,190,124 B2

7

For PCMS specifically, the most visible issues include:

Defect Management—PCMS components will ship from
the factory with known defects and may grow defects
over their operating lifespan.

Write Wear Management—PCMS implementations have a
limitation as to the number of times any given cell should
be written to.

Read Disturb—PCMS implementations have a limitation
as to the number of times any given cell should be read
from between each write to the cell.

FIG. 7 illustrates address redirection tables that provide
functionality for mapping page-granular PPAs and LBAs into
ever-changing pages in the physical NVRAM devices. In
FIG. 7, there is a “phantom” memory remap table 700 that
remaps a given PPA page address to a direct address space
(DSPACE) address (an address referring to a specific physical
page of NVRAM) between 0 GB to 4 GB-1. The memory
remap table 700, in many embodiments, is stored as a single
block of memory either in an SRAM integrated into the
memory control (112 in FIG. 6) or in the near memory
(DRAM). As shown, there are 1 million memory DSPACE
entries in the memory remap table 700 since each entry refers
to a unique 4 KB page of PPA address space. The memory
remap table 700 is built from groups of remap descriptors
(e.g., memory DSPACE 1 represented a stored descriptor in
the memory remap table 700. In many embodiments, there is
one descriptor for each cacheline (e.g., 4K cacheline) of PPA
space. The contents of a descriptor may vary based on differ-
ent pieces of information that may need to be tracked. At least
the NVRAM device address would be common to each
descriptor embodiment, which would comprise a certain set
of'address bits in NVRAM device space corresponding to the
PPA memory entry. This address would need to be in each
descriptor to allow for the actual remapping procedure to take
place.

Similarly to the memory descriptors, there are also storage
descriptors in the storage remap table. In the embodiment
shown in FIG. 7, there are 15 million storage DSPACE entries
in the storage remap table 702 since each entry refers to a
unique 4 KB page of LBA address space. According to some
embodiments, the remap tables 700 and 702 are located
within an SRAM or other high-speed memory storage struc-
ture integrated within hardware control logic 704. Although
FIG. 7 shows a specific implementation of the storage and
memory remap tables being a given size and organized in a
given way, in many other embodiments, the storage and
memory remap tables are different sizes, different levels of
granularity, and/or implemented in different ways (e.g., the
storage descriptors may access NVRAM in a coarser manner,
wherein one descriptor refers to a 32 KB block instead of at a
4 KB page granularity, among other alternative examples).
Hardware control logic 704 may represent memory control
112 or storage control 604, which are both shown in FIG. 6, or
it may comprise a new and different form of control logic also
designed to take advantage of the remap tables 700 and 702.
In some embodiments, the storage control and memory con-
trol are represented as different control logic blocks inte-
grated in or discrete from the processor. In other embodi-
ments, these different forms of control logic are integrated
into a single control logic block that encompasses all hard-
ware control logic necessary to manage the NVRAM
device(s).

Returning to remap tables 700 and 702, in other embodi-
ments, these tables are stored in a reserved portion of DRAM
that stores MLMD and other control data structures. Essen-
tially, FIG. 7 illustrates a virtual memory system that is com-
prised of the following components:

10

15

20

25

30

35

40

45

50

55

60

65

8

A memory remapping table 700 that creates a virtual or
“phantom” space that emulates the traditional DRAM
through a combination of a tiny amount of DRAM and
an array of pointers into a physical memory portion of
NVRAM space 600.

A storage remapping table 702 that provides a translation
from LLBA address space to a physical storage portion of
NVRAM space 602.

Hardware control logic 704, that allows software driver
logic 706 to manipulate pointers in the memory remap-
ping table 700 as well as pointers in the storage remap-
ping table.

A software driver that uses the aforementioned hardware
control logic 704 to remap pointers between storage and
memory portions of NVRAM instead of scheduling
hardware-driven copies of data through interrupt
requests and DMA transfers.

In some embodiments, there are separate software drivers
utilized for manipulating the memory and storage portions of
the remapping system. In other embodiments, there is one
software driver that includes logic, such as software driver
logic 706, that handles both remap tables. According to some
embodiments, memory descriptors may be handled in hard-
ware while storage descriptors are handled by a software
driver.

Although FIG. 7 shows an embodiment of an NVRAM
memory/storage system that separates NVRAM into a
memory portion 600 and a storage portion 602, there is no
specific reason to divide the NVRAM devices into storage
and memory regions, so long as the complexity of mixing the
two can be managed in a straightforward manner.

Once storage and memory have been located in the same
physical device and their addresses intermingled, it becomes
unnecessary to perform disk-related DMA operations in a
traditional way-specifically it becomes unclear that data
should be copied from one part of the NVRAM into another
part. Instead, the data might simply be referenced in-place by
modifying pointers in the remap tables 700 and 702. In this
way, applications see that data appears in their address spaces
without first having been copied there. This remapping capa-
bility is called “direct access™ and accounts for the “D” in an
MLMD system.

FIG. 8 illustrates the same address redirection tables as
FIG. 7 to map PPAs and LBAs into NVRAM, but instead of
having a pre-designated physically linear portion of NVRAM
for storage use and another portion for memory use, each
physical location in the NVRAM in FIG. 8 is allowed to be
designated for either storage or memory use. Thus, in FIG. 8,
each location in the entire physical NVRAM space 800 is
capable of being utilized for memory or storage.

FIG. 9 is a flow diagram for a process to allow non-volatile
storage pages that reside in a particular type of device (e.g.,
PCMS memory) to be mapped directly into a software appli-
cation’s address space. This process is able to complete with-
out copying the data from the storage media (where the data
is stored long term) to the memory where the data is utilized
by the running software application. By eliminating this copy,
which in a standard implementation would otherwise involve
at least a CPU interrupt and a direct memory access (DMA)
transfer, significant time is saved and less power is consumed
from the point when the software application requests the data
until the time the software application has access to the data in
its address space. The process is performed by processing
logic that may be comprised of hardware, software, or firm-
ware logic or may be a combination of multiple types of logic.
Additionally, the process described below and in FIG. 9 is
simply an illustrative example using a 3-page allocation of

US 9,190,124 B2

9

memory. In other embodiments, there may be less or more
pages to be allocated and the steps involved may vary in one
or more different ways to complete the process. The process
begins by processing logic in a user process (e.g., a software
application running on an OS) allocating a 3-page buffer from
the OS for a 3-block read from non-volatile storage (e.g.,
PCMS) (processing block 900). In other embodiments, this
may be a smaller or larger number of pages in the page buffer
and a smaller or larger number of blocks for the read. Next,
processing logic in the OS frees 3 pages in physical DRAM
and maps pointers from the user space in the OS to physical
memory pages A, B, and C (processing block 902). Pages A,
B, and C are actual DRAM device physical address pages.
Although processing logic at block 902 is described as being
in the OS, in other embodiments, this processing logic may be
implemented in hardware for faster allocation. Additionally,
although the user bufter is described as being in DRAM, in
other embodiments, the user buffer may be present in a spe-
cialized SRAM or in a dedicated portion of the processor’s
cache as opposed to simply being present in DRAM.

Then processing logic in the user process requests the OS

to move data from non-volatile storage addresses X, Y, and Z
(representing the 3 blocks in non-volatile storage) to the user
buffer. Additionally, at this time the user process is set into an
idle state by the OS (processing block 904). Next, processing
logic in the OS walks through all memory translations to get
to the physical memory page addresses and requests a storage
driver running on the OS to move the data from storage
addresses X, Y, and Z to physical memory pages A, B, and C.
(processing block 906). Again, the processing logic in blocks
904 and 906 may be in hardware, rather than in the OS, in
other embodiments. Furthermore, in other embodiments,
hardware logic may be used in place of the storage driver to
move data from storage address to physical memory pages.

Then processing logic in the storage driver requests a stor-

age/device mapping for LBA storage addresses X, Y, and Z
and changes pointers to memory pages A, B, and C to those
for X, Y, and Z (processing block 908). The storage driver then
informs the OS that the transfer has been completed (process-
ing block 910), the OS marks the user process as active again
(processing block 912), and the user process then receives the
data (processing block 914). In other embodiments that are
not shown, there is a single table mapping memory and stor-
age to physical NVRAM pages where an entry for each page
in the single table has a bit field that indicates whether the
page is being utilized for storage or memory. In this embodi-
ment, remapping from storage to memory, or vice versa,
simply involves flipping the bit to designate the page in the
other format.

Accesses to the storage space are directly mapped into the

memory space in the following way:

All accesses are processed through the memory remapping
table (700 in FIG. 8). For example, any time an applica-
tion produces a read access to address 1 MB, the remap-
ping mechanism will access the 256 th entry in its table
(assuming 4 KB pages) and redirect the read to a
memory-owned page in the PCMS space, according to
the address held in the 256th entry of the table.

When the operating system asks the SATA or other device
driver to copy a page from, for example, the 100 GB area
onthe “disk” into the 1 MB area in the phantom memory,
the device driver will send that information to the hard-
ware interface mechanism to remap pointers.

In this specific case the hardware mechanism will receive a
message to copy the page at 100 GB in storage into the
phantom DRAM page at 1 GB. Instead of physically
moving the data, the 256th pointer in the phantom

5

10

15

20

25

30

35

40

45

50

55

60

65

10

remapping table will be overwritten by 100 GB/4 KB,
thus causing all future read accesses to phantom 1 MB to
be serviced from the 100 GB location formerly mapped
as storage.

Essentially, what was previously a designated storage loca-
tion in physical NVRAM space (800 in FIG. 8), may be
changed to a memory location, or vice versa. And the process
for doing this simply involves switching pointers within the
memory and storage remap tables (700 and 702, respectively,
in FIG. 8).

Although many forms of NVRAM may be utilized for
these implementations, PCMS is a good candidate due to low
read latencies. But PCMS has a substantial asymmetry
between its read and write latencies. Thus, when dealing with
PCMS, there are certain processes that may be utilized to
minimize the shortcomings of PCMS writes. As a result of the
much slower write times, there can be substantial delay added
to read latencies when an ongoing write is occupying the
PCMS memory system.

According to some embodiments, writes are performed
only to pages that have been pre-cleaned (actually pre-set),
since writing data to a pre-cleaned page is substantially faster
than writing to a page that hasn’t been prepared. Unfortu-
nately, having a policy that writes only to pre-cleaned pages is
not energy-efficient because this roughly doubles the energy
taken to write each bit.

In many embodiments, a mechanism is utilized to write to
pre-cleaned pages when the PCMS memory system is rela-
tively busy and writes to non-cleaned pages when the PCMS
memory system is relatively quiet. The net effect is to provide
minimum power consumption while the system is lightly
loaded and to trade higher power for improved performance
when the system becomes busy.

FIG. 10 illustrates an embodiment of a PCMS page clean-
ing process using a page empty write policy. As stated,
because of the nature of PCMS storage, it can take several
times longer to write data to PCMS than it does to read data
from PCMS. This asymmetry complicates the process of
designing a memory and/or storage controller, since write
operations can block access to an area of the PCMS for a
substantial length of time and prevent a performance-sensi-
tive read from being serviced.

There are also significant write time deviations between
setting a PCMS storage element (a bit) to “1,” which takes a
relatively long time, versus setting the same element to “0,”
which takes roughly the same amount of time as it takes to
read an element. Thus, it is highly beneficial to preset free
pages of PCMS memory to all 1°s, and then, while performing
a write to the page with information, only the bits that need to
be set to 0 would need to be changed.

Therefore, in many embodiments, a pool of preset pages
(pages in which every bit is set to 1) is utilized for write
operations. The PCMS storage/memory controller is respon-
sible for scheduling transfers of read and write data between
any controller caches or write buffers that are used to store
data in motion to and from the PCMS devices. Optimally, all
data that won’t be accessed for a while would be moved into
PCMS in order to make room in controller caches and write
buffers for other data. Additionally, moving data that will be
used soon into controller caches will increase system perfor-
mance.

According to many embodiments, the process shown in
FIG. 10 may help the PCMS storage/memory controller to
reduce the time that the controller’s caches and write buffers
are unavailable for useful work because they are waiting for
data to be retired (i.e., written to) PCMS devices. Turning to
FIG. 10, in many embodiments write buffer/cache manage-

US 9,190,124 B2

11

ment logic 1000 resides within a controller (not shown). This
controller may be the memory controller, the storage control-
ler, a combined memory/storage controller, or another con-
troller altogether in different embodiments. The write buffer/
cache management logic 1000 essentially is management
logic that manages one or more write buffers and/or one or
more caches that are resources of the controller for PCMS
operations. For example, a write buffer in this sense may be a
storage location where pending writes to one or more PCMS
devices are queued while they wait to be retired (i.e., com-
pleted). The pending writes in the write buffer wait for a free
page of PCMS memory to become available and then the
management logic coordinates the write from the buffer to the
free page.

More specifically, a free page pool 1002 of free PCMS
memory pages is accessible to the write buffer/cache man-
agement logic 1000. When the management logic decides to
go ahead and retire a write request, a page from the free page
pool 1002 is mapped into phantom address space 1004 (step
1—denoted by the 1 in the circle in FIG. 10). Then write
buffer/cache management logic 1000 executes the write
request from the write buffer 1006 by writing data to the
phantom address space 1004 at the mapped page (step 2). The
write buffer entry is then marked available and the page that
is no longer needed is sent to a dirty page pool 1008 (step 3).
The dirty page pool may simply be a dirty list of PCMS pages
that have data which is no longer needed. In many embodi-
ments, the dirty page pool 1008 is a list of pages pointed to by
a dirty page pool pointer. For each page taken from the list, the
pointer then points to the next page on the list. Each new dirty
page, such as the dirty page sent to the dirty page pool 1008
from step 3, may be appended to the end of the list.

Page cleaning logic 1010 then pulls a page from the dirty
pool and cleans it (step 4). In many embodiments, the clean-
ing process sets all bits in the page to “1” to pre-set the page
for fast writes. A stream of pages (step 5) is then sent by the
page cleaning logic 1010 to the free page pool 1002. Similarly
to the dirty page pool 1008, the free page pool 1002 may be
pointed to by a free page pool pointer. The free page pool
pointer points to the page at the front of a list of free pages of
PCMS memory. When a page is taken from the list and
mapped to phantom address space for a write, the pointer then
points to the next page in the list. When a clean page arrives
from the stream of clean pages, that page is appended to the
end of the list.

The page cleaning logic 1010 generally operates indepen-
dently from the write buffer/cache management logic 1000.
The page cleaning process, per page, is governed at a rate that
takes into consideration overriding system considerations,
such as power and performance operating points. In many
embodiments, the page cleaning logic 1010 keeps a count of
pages that need cleaning, by incrementing a counter for every
page that arrives at the dirty page pool 1008 and decrementing
the same counter for every page that is pulled out of the dirty
page pool 1008 to be cleaned. This is in addition to keeping
track of the pointer to the front of the list of pages that
comprises the dirty page pool 1008. In other embodiments,
the dirty page pool 1008 and clean page pool 1002 may be
kept in tables rather than in lists.

According to some embodiments, write buffer/cache man-
agement logic 1000 may include logic that fills gaps for
partially cached pages. For example, if the write buffer has
partial data from a page to write to a clean page mapped into
phantom address space, then the logic can perform a read
from the PCMS device to get the remaining information for
the page to fill in the gaps of write data.

15

30

40

45

50

60

12

Additionally, the write buffer/cache management logic
1000 includes a mechanism that is capable of physically
writing data from the write buffer 1006 to a physical PCMS
page of memory. With the page cleaning logic 1010 in opera-
tion, there could always be some number of pre-set pages
available for writes. FIG. 11 illustrates an embodiment of a
process flow for the write mechanism that writes data to
PCMS pages available in phantom address space. The process
is performed by processing logic, which may comprise hard-
ware, software, firmware, or a combination of two or more of
these listed forms of processing logic.

The process begins with a page of data in a write buffer that
needs to be flushed (processing block 1100). The page is
waiting to be written out to a PCMS memory device and the
process of flushing the buffer accomplishes the write. The
process continues with processing logic determining if the
entire page of data is valid (processing block 1102). If the
entire 4K page of data is not valid then processing logic
fetches data for the portions of the page that are not valid from
the 0old PCMS page that had the data which went into the write
buffer (processing block 1104). Then regardless of whether
processing block 1104 is performed, the next step for either
logic flow path is for processing logic to find the next free
PCMS page in the free page pool (processing block 1106).

Once the free page is located, in some embodiments, pro-
cessing logic writes the entry or entries from the write buffer
to the found free page in the free pool (processing block
1108). In some embodiments, processing logic then modifies
the pointer in the phantom address table (which also can be
referred to as the memory remap table 700 from FIG. 7) to
point to the page that was just written to (processing block
1110). Then processing logic marks the write buffer entry
available (processing block 1112) to allow another write
request to enter the write buffer.

FIG. 12 illustrates an embodiment of a mechanism to allow
PCMS pages to be written to efficiently from a power/perfor-
mance perspective. According to many embodiments, a
PCMS page status table 1200 is stored in the computer sys-
tem. The location of the PCMS page status table 1200 differs
in different embodiments. In many embodiments, the PCMS
page status table 1200 is stored in the PCMS itself because the
table can be substantially large (e.g., 1 TB of PCMS of 4 KB
page granularity is 1 TB/4 KB=256 million entries). In other
embodiments, this table may be stored in a reserved section of
DRAM if there is enough reserved space available.

The PCMS page status table 1200 includes two bits per
page entry that is encoded as follows:

00—page is not in use and clean

00—page is not in use, but requires cleaning

10—page is in use as far memory

11—page is either allocated to storage or is bad

At 2-bits per entry with 256 million entries for a TB of
PCMS, the table would require 64 MB of storage. This page
status table allows for a distinction between pages that have
been pre-cleaned (e.g., pages that have all bits with “1””) and
pages that haven’t been cleaned (e.g., pages that have old data
in them and also known as “dirty” pages).

For access to free pages, two pointers are provided. A first
pointer 1202 points to a list (i.e., pool) of cleaned free pages
1204. A second pointer 1206 points to the list/pool of dirty
free pages 1208. In many embodiments, these pools comprise
a list of addresses to the locations in PCMS physical address
space. In some embodiments, these two pools may be main-
tained in adjacent locations to the PCMS page status table
1200. In other embodiments, these two pools may be main-
tained elsewhere in the system, such as in DRAM.

US 9,190,124 B2

13

Page cleaning logic 1010 (which is potentially located
within memory/storage control in FIG. 7 and FIG. 8, but
could be located elsewhere) cleans pages of PCMS memory
and either finds or is provided a list of free pages that are dirty
(old data is located on these pages, which means the bits on
these pages are not all set to “1”’). The PCMS page status table
1200 maintains the status of each page and the page cleaning
logic 1010 can maintain the status of each page. For example,
when a dirty free page is pulled out of the dirty free page pool
1208 and cleaned, page cleaning logic 1010 may update the
PCMS page status table 1200 entry for that particular page
from 01 “free/not clean” to 00 “free/clean.”

In other embodiments, page cleaning logic 1010 can addi-
tionally search the PCMS page status table 1200 for free/not
clean pages (01) to be cleaned. For found pages that are not
clean, page cleaning logic 1010 can add the page to the dirty
free page pool 1208.

During times when there is little or no PCMS traffic, page
cleaning logic 1010 may decide to clean one or more pages
located in the dirty free page pool 1208. When this happens to
apage, page cleaning logic then adjusts the status bits for that
page in the PCMS page status table 1200 to 00, which signi-
fies the page is free and clean. Then page cleaning logic 1010
may move that page from the dirty free page pool 1208 to the
cleaned free page pool 1204. When there is significant PCMS
traffic, page-cleaning logic may not attempt to clean any
pages to not adversely impact PCMS memory performance.

To determine when there is PCMS traffic, a memory traffic
monitor 1212 is utilized to track recently consumed PCMS
bandwidth. During operation, the memory traffic monitor
logic is constantly counting the number of memory transac-
tions within a given period of time, such as 1 microsecond
(us). If the number of PCMS transactions during this given
period is greater than a programmable value (the program-
mable value may be programmed through BIOS or else-
where), then a bit is set in a shift register located within
memory traffic monitor 1212. A separate piece of logic in the
memory traffic monitor 1212 monitors the shift register in
order to understand how many “busy” periods of time the
system has had during the past “n” periods of time. If the
number of busy periods is greater than a programmable num-
ber, then the logic will cause the next free pointer 1214 to be
sourced from the cleaned free page pool 1204. If the number
of'busy periods is less than or equal to the value, then the next
free pointer 1214 will be sourced from the not-cleaned free
page pool 1208.

As mentioned above, this same memory traffic monitoring
logic may be utilized to help page cleaning logic 1210 deter-
mine when to clean pages, thus, the memory traffic monitor
1212 is additionally communicatively coupled to the page
cleaning logic 1210 in many embodiments.

In another embodiment, the system could choose to pre-
clear pages in all cases where the device was connected to
alternating current (AC) power, since the power consumption
may only be a problem when a device is running on battery.

Returning to FIG. 7, it is generally the case that “memory”
is more commonly read from and written to than “storage”
during standard operations. Thus, if the portion of NVRAM
(e.g., PCMS) that is designated as memory space stays that
way and the remaining portion of NVRAM is designated as
storage space, then, due to general wear characteristics for
many types of non-volatile memories, the memory space and
storage space sections will wear unevenly over time.

Thus, to remedy this issue, FIG. 13 illustrates an embodi-
ment of a mechanism to allow the consistent movement of
NVRAM pages between memory and storage designations.

5

15

20

25

30

35

40

45

50

55

60

65

14

InFIG. 13, there is a NVRAM memory/storage swap hard-
ware logic 1300 that migrates NVRAM pages between
memory use and storage use. The memory/storage swap hard-
ware logic 1300 utilizes:

A bit-mapped non-volatile table that reflects the status of
each page of NVRAM (i.e., whether the page is assigned
to storage or if it’s available for memory). This table
generally would be stored within the NVRAM itself. For
example, fora PCMS-based system, this table may com-
prise NVRAM page status table 1302 (similar or the
same as PCMS page status table 1200 in FIG. 12).

The storage remapping table 702 that maps storage-space
LBA addresses to NVRAM device addresses.

A hardware mechanism to cause NVRAM storage pages to
move to an available memory-space page and allow the
storage-space page that previously contained the data to
be re-purposed for memory use.

In many embodiments, when the logic illustrated in FIG.
13 operates, the following attributes are taken into consider-
ation:

The memory pool write mechanism will always write data
to an empty memory-allocated page.

The storage pool, represented by NVRAM addresses that
are mapped into storage remapping table 702, interacts with
the memory write mechanism to write to storage-allocated
pages, migrating the written page to the storage pool when the
write completes.

The storage pool pushes pages that are no longer necessary
into the write pool when it notices they are no longer needed.
In some embodiments, they are pushed into the free page pool
1304, which may or may not be a “clean” pool (i.e. a pool of
free pages that have been pre-set for writes, such as the one
discussed above in regard to FIG. 12.

When a page is written to storage, these attributes for this
process will cause the written page to migrate from the
memory pool to the storage pool and the page previously
allocated to the storage location to migrate from the storage
pool to the memory pool.

FIG. 13 describes the hardware mechanism, which in the
illustrated embodiment is shown as memory/storage swap
hardware logic 1300. This logic may be located within
memory/storage control logic or elsewhere in the system. To
provide an illustrative example, the memory storage swap
hardware logic 1300 presides over a sphere of influence in the
memory/storage subsystem 1306. The sphere of influence
1306 simply shows at least a minimal amount of hardware
and software logic that the memory/storage swap hardware
logic 1300 can control to perform one of these swaps.

The process is started through a periodic timer or write
counter (timer/counter: T/C 1308) that may be present within
the memory/storage swap hardware logic 1300. At a certain
point, the T/C 1308 fires (which refers to a specified amount
oftime passing for the counter or a specified number of writes
taking place) and causes the data in a PCMS device page
allocated to a storage (a current storage page mapped into
storage remap table 702) to be copied to write buffer 1006
(step 1). Once the write buffer 1006 has the data to be written
to an empty page in NVRAM memory space (a page allocated
to memory remap table 700), then a free page from the free
page pool 1304 is allocated and mapped into the memory
remap table 700 (step 2A).

Once the page is allocated in the table, then the write buffer
is flushed and the data originally received from the current
storage page is written into the new mapped free page in
memory remap table 700 (step 2B). At this point, the data that
was stored in the current storage page in storage space is now
located in the new mapped free page in memory space. After

US 9,190,124 B2

15

this takes place, or potentially in conjunction with steps 2A
and 2B, the NVRAM address to the current storage page
(which now has old data in it) is reallocated into memory
space as the new migrated memory page (step 3). Thus, the
physical NVRAM page that this address points to changes
from being allocated as storage space in the storage remap
table 702 to being allocated as memory space in the memory
remap table 700. At the same time of this reallocation or at a
later time, the new mapped free page, which now has the
storage data written to it that arrived from the write buffer
1006 in step 2B, is reallocated as a new migrated storage page
(step 4). Therefore, the physical NVRAM page that this
address changes from being allocated as memory space in the
memory remap table 700 to being allocated as storage space
in the storage remap table 702.

At this point the migration has completed. This migration
can methodically happen for page after page of physical
NVRAM memory. Whenever the T/C 1308 fires, another
memory allocated page is migrated to storage and a corre-
sponding storage allocated page is migrated to memory.
When this process is repeated throughout all NVRAM physi-
cal pages over time, the result is an evenly worn NVRAM
device from the bottom to top of the device’s physical
memory addresses.

Additional power and performance considerations may be
necessary for efficiency purposes depending on the “plane”
configuration of an NVRAM physical device. For example,
with PCMS in many cases there are multiple “planes,” which
refer to regions of memory that are efficient when working
with consecutive accesses in a given plane, but the device
loses transaction efficiency (from both a power and perfor-
mance perspective) when consecutive accesses to different
physical memory locations cross planes.

PCMS generally has fairly short latencies for most
accesses, about 50 nanoseconds (ns) for current generation
devices, but requires longer latencies, about 100 ns when
successive accesses are to two different planes in the memory
device, where a plane may represent about a quarter of the
entire memory space in the device. Additionally, there can be
substantial power/energy penalties for crossing planes
between accesses.

Thus, a mechanism is suggested to alleviate these penalties
as much as possible by eliminating as many unnecessary
plane transitions as possible. FIG. 14 illustrates an embodi-
ment of such a process and an accompanying mechanism (i.e.
hardware logic) to support the process of eliminating unnec-
essary PCMS plane transitions.

In many embodiments, there is a set of PCMS device
accesses (Al through AS5) that are shown in order on the
actual planes in view 1400. Access 1 is to a physical location
in plane 1, access 2 is in a physical location in plane 2, access
3 is in a physical location in plane 3, access 4 is in a physical
location in plane 4, and access 5 is in a physical location in
plane 1. In view 1402, the transitions (T1 through T4)
between planes are shown when the accesses are retired in
order. Specifically, plane transition 1 takes place between
accesses 1 and 2, plane transition 2 takes place between
accesses 2 and 3, plane transition 3 takes place between
accesses 3 and 4, and plane transition 4 takes place between
accesses 4 and 5. So with a standard access order view 1404
of'accesses in the order received, there are 4 plane transitions.

With a memory control logic having transaction buffers
that are queued (incoming read and write requests are queued
prior to execution, it is possible and actually desirable to
re-order the transaction order when logic has knowledge of
the physical locations of the accesses. Thus, memory control
logic, which may include a PCMS transaction re-order logic

10

15

20

25

30

35

40

45

50

55

60

16

unit, has the capability of performing lookups from queued
PCMS transactions by using memory/storage remapping
logic (discussed above) to obtain physical PCMS addresses
for each transaction. Based on having knowledge of the
physical location of each PCMS transaction in a transaction
queue, a PCMS transaction re-order logic unit may perform a
re-order of transactions to increase the plane transition effi-
ciency of a set of transactions.

For FIG. 14, areasonable set of out-of-order plane accesses
1406 (modified from the in-order plane accesses shown in
view 1400) will move the fifth access (A5) from the fifth
position in the transaction queue to the second position. Thus,
the newly re-ordered set of accesses would be Al in plane 1,
then A5 in plane 1, then A2 in plane 2, then A3 in plane 3, and
finally A4 in plane 4. This order would change the number of
plane transitions from four to three, as shown in view 1408,
which shows plane transition 1 happening between accesses 5
and 2, plane transition 2 happening between accesses 2 and 3,
and plane transition 3 happening between accesses 3 and 4.
The result is an optimized access order 1410 with one less
plane transitions. This reordering would decrease overall
power consumption as well as increase the memory through-
put due to less latency-intense plane transitions.

4. SoC-based Computing Device Overview

FIG. 15 illustrates an embodiment of a computing device
incorporating the MLLMD-based memory subsystem as being
a system-on-a-chip (SoC) package 1500 design, which com-
bines processor, graphics, memory, and I/O control logic into
one SoC package. Thus, in FIG. 15, CPU core(s) 1502, the
GPU core(s) 1504, their respective caches (1506 and 1508)
are all present in the package, along with memory subsystem
1512 and I/O subsystem 1530.

Although not shown, each CPU core may internally
include one or more instruction/data caches, execution units,
prefetch buffers, instruction queues, branch address calcula-
tion units, instruction decoders, tloating point units, retire-
ment units, etc. Each core present is located on a CPU semi-
conductor die. For each logic unit shown other than the
core(s) 1502 in the SoC Package 1500, the logic unit may be
on the CPU core(s) 1502 semiconductor die in some embodi-
ments or on another die in other embodiments. If a given logic
unitis not on the same die as CPU core(s) 1502, that logic unit
would be on a different semiconductor die, though in the same
SoC package 1500, which can include several dies commu-
nicatively coupled with each other in the package.

The SoC 1500 also includes at least one lower level CPU
cache, such as CPU cache 1506. This may be a general pur-
pose cache that is capable of storing a significant amount of
data retrieved from memory locations in volatile memory
1518 and/or NVRAM 1520. In different embodiments, CPU
cache 1506 may be shared among all cores or each core may
have its own lower level cache.

One or more GPU core(s) 1504 are also included in SoC
package 1500 as well as a lower level GPU cache 1508 which
may store graphics related data for the GPU Core(s) 1504 to
work on. GPU core(s) 1504 may internally include one or
more execution units and one or more instruction and data
caches utilized to feed the execution units with information to
process. Additionally the GPU core(s) 1504 may contain
other graphics logic units that are not shown in FIG. 15, such
as one or more vertex processing units, rasterization units,
media processing units, and codecs among others. For sake of
simplicity, the specific logic within the GPU core(s) 1504 is
not shown.

SoC package 1500 may also include a home agent 150 that
incorporates components coordinating and operating core(s)
1502 as well as other elements of SoC package 1500. Home

US 9,190,124 B2

17

agent unit 1510 may include, for example, a power control
unit (PCU). The PCU may include logic and components
needed for regulating the power state of the core(s) among
other tasks.

In FIG. 15, the SoC package 1500 also includes a memory
subsystem 1512 that has an integrated volatile memory con-
troller 1514, which may be utilized to provide access to vola-
tile memory 1518. Volatile memory control 1514 may receive
a memory access request from a CPU core and route that
request to volatile memory 1518. Likewise, NVRAM control
1516 may receive a memory access request from a CPU core
and route that request to NVRAM 1520.

“Volatile memory” 1518 is an intermediate level of
memory configured in conjunction with NVRAM 1520 that
has lower read/write access latency relative to NVRAM 1520
and/or more symmetric read/write access latency (i.e., having
read times which are roughly equivalent to write times). As
discussed above, in some embodiments, the volatile memory
1518 has significantly lower write latency than the NVRAM
1520 but similar (e.g., slightly lower or equal) read latency;
for instance the volatile memory 1518 may be a volatile
memory such as volatile random access memory (VRAM)
and may comprise a DRAM or other high speed capacitor-
based memory. Note, however, that the underlying principles
of the invention are not limited to these specific memory
types. Additionally, the volatile memory 1518 may have a
relatively lower density and/or may be more expensive to
manufacture than the NVRAM 1520.

In some embodiments, volatile memory 1518 is configured
between the NVRAM 1518 and the CPU cache 1506. In some
of the embodiments described below, volatile memory 1518
is utilized to mask the performance and/or usage limitations
of the NVRAM 1520 including, for example, read/write
latency limitations and memory degradation limitations. In
these implementations, the combination of volatile memory
1518 and NVRAM 1520 operates at a performance level
which approximates, is equivalent or exceeds a system which
uses only DRAM as system memory.

Although shown in a specific configuration in FIG. 15, in
different embodiments, volatile memory 1518 can be located
on the processor die, located external to the processor die on
a separate die located on the SoC package 1500, located
outside the CPU package with a high bandwidth link to the
SoC package 1500, for example, on a memory dual in-line
memory module (DIMM), a riser/mezzanine, or a computer
motherboard). In FIG. 15, volatile memory 1518 is shown
being located external to the SoC package 1500. The volatile
memory 1518 may be communicatively coupled with the SoC
package 1500 using a single or multiple high bandwidth links,
such as DDR or other transactional high bandwidth links. A
communicative coupling of devices refers to being coupled
through an electrical, optical, wireless, or other form of link
or combination of links to allow information to be passed
back and forth between the devices that are coupled to one
another. In some embodiments, the coupling is direct and
allows information to pass directly from the first device to the
second and, potentially, vice versa. In other embodiments, the
coupling is indirect and requires the information to pass
through one or more additional devices that reside along the
route the information takes while being transferred between
the two communicatively coupled devices in question.

In many embodiments, an input/output (I/O) subsystem
1530 is present in the system in FIG. 15 to communicate with
1/0 devices, such as /O device(s) 1534. The 1/O subsystem
1530 in FIG. 15 is integrated into the SoC package 1500.
Within the I/O subsystem 1530, one or more I/O adapter(s)
1532 are present to translate a host communication protocol

25

35

40

45

18

utilized within the CPU core(s) 1502 to a protocol compatible
with particular I/O devices. Some of the protocols that adapt-
ers may be utilized for translation include Peripheral Com-
ponent Interconnect (PCI)-Express (PCI-E), 3.0; Universal
Serial Bus (USB), 3.0; Serial Advanced Technology Attach-
ment (SATA), 3.0; Small Computer System Interface (SCSI),
Ultra-640; and Institute of Electrical and Electronics Engi-
neers (IEEE) 1594 “Firewire;” among others.

Additionally, there may be one or more wireless protocol
1/O adapters. Examples of wireless protocols, among others,
are used in personal area networks, such as IEEE 802.15 and
Bluetooth, 4.0; wireless local area networks, such as IEEE
802.11-based wireless protocols; and cellular protocols

A Basic Input/Output System (BIOS) flash 1536 device
may additionally be present in the system to provide a set of
boot instructions when the system powers on or reboots. For
BIOS flash 1536 device, some of the protocols that I/O adapt-
ers 1534 may translate include Serial Peripheral Interface
(SPI), Microwire, among others.

In the following description, numerous specific details
such as logic implementations, means to specify operands,
resource partitioning/sharing/duplication implementations,
types and interrelationships of system components, and logic
partitioning/integration choices are set forth in order to pro-
vide a more thorough understanding of the present invention.
It will be appreciated, however, by one skilled in the art that
the invention may be practiced without such specific details.
In other instances, control structures, gate level circuits and
full software instruction sequences have not been shown in
detail in order not to obscure the invention. Those of ordinary
skill in the art, with the included descriptions, will be able to
implement appropriate functionality without undue experi-
mentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements, which may or may not be
in direct physical or electrical contact with each other, co-
operate or interact with each other. “Connected” is used to
indicate the establishment of communication between two or
more elements that are coupled with each other.

Embodiments of the invention may also be provided as a
computer program product which may include a non-transi-
tory machine-readable medium having stored thereon
instructions which may be used to program a computer (or
other electronic device) to perform a process. The non-tran-
sitory machine-readable medium may include, but is not lim-
ited to, floppy diskettes, optical disks, CD-ROMs, and mag-
neto-optical disks, ROMs, RAMs, EPROMs, EEPROMs,
magnet or optical cards, propagation media or other type of
media/machine-readable medium suitable for storing elec-
tronic instructions. Embodiments of the invention may also
be downloaded as a computer program product, wherein the
program may be transferred from a remote computer (e.g., a

US 9,190,124 B2

19

server) to a requesting computer (e.g., a client) by way of data
signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., a modem or network
connection).

While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the
invention is not limited to the embodiments described, can be
practiced with modification and alteration within the spirit
and scope of the appended claims. The description is thus to
be regarded as illustrative instead of limiting.

We claim:

1. A method, comprising:

designating a first amount of a non-volatile random access

memory (NVRAM) in a computer system to be utilized
as a memory alternative for a dynamic random access
memory (DRAM);
designating a second amount of the NVRAM to be utilized
as a storage alternative for a mass storage device;

during operation of the computer system, re-designating at
least a first portion of the first amount of NVRAM from
the memory alternative designation to the storage alter-
native designation;

during operation of the computer system, re-designating at

least a first portion of the second amount of NVRAM
from the storage alternative designation to the memory
alternative designation; and

determining, for each page of a plurality of NVRAM

physical pages, whether each NVRAM physical page is
free to be written to, wherein a given NVRAM physical
page is free to be written to when the given NVRAM
physical page is not currently holding valid data.

2. The method of claim 1, further comprising:

cycling through the entire first amount of NVRAM over a

first amount of time to be re-designated from the
memory alternative designation to the storage alterna-
tive designation, wherein the cycling comprises re-des-
ignating each of a plurality of portions that make up the
entire first amount of NVRAM at each of a plurality of
segments of time the sum of the plurality of segments
comprising the first amount of time.

3. The method of claim 1, further comprising:

providing access to at least one physical location in the

NVRAM for a software application running on the com-
puter system through a remapping table.

4. The method of claim 3, wherein the remapping table
further comprises a memory remapping table, the memory
remapping table translating at least a platform physical
address to a physical NVRAM address.

5. The method of claim 3, wherein the remapping table
further comprises a storage remapping table, the storage
remapping table translating at least a logical block address to
a physical NVRAM address.

6. The method of claim 3, wherein the remapping table
further comprises a memory and storage remapping table, the
memory and storage remapping table having at least a bit
associated with each table entry determining whether the
table entry is designated for memory or storage space.

7. The method of claim 1, further comprising:

determining, for each free NVRAM physical page of the

plurality of NVRAM physical pages, whether each free
NVRAM physical page is clean, wherein a given free
NVRAM physical page is clean when all stored bits in
the given free NVRAM physical page are set to one.

8. The method of claim 7, further comprising:

cleaning at least one free NVRAM physical page from the

plurality of NVRAM physical pages, wherein the at least

10

15

20

25

30

35

40

45

50

55

60

65

20

one free NVRAM physical page to be cleaned comprises
a page of physical NVRAM with at least one stored bit
set to zero.
9. The method of claim 1, further comprising:
providing a requestor, the requestor requesting to writeto a
page of NVRAM, one of a plurality of frere NVRAM
physical pages that has not been cleaned when an inter-
face to the NVRAM is substantially idle; and

providing the requestor one of a plurality of free NVRAM
physical pages that has been cleaned when the interface
to the NVRAM is not substantially idle.

10. The method of claim 9, further comprising:

monitoring traffic to and from the NVRAM interface to

determine whether the interface is substantially idle of
traffic at any given time.

11. The method of claim 1, further comprising:

ordering a set of transactions to the NVRAM based on an

NVRAM plane location of each transaction location,
wherein the ordering includes minimizing a number of
plane crossings between each of the set of transactions.

12. The method of claim 1, wherein the NVRAM com-
prises phase change memory and switch (PCMS) memory
technology.

13. A device, comprising:

a hardware control logic to

designate a first amount of a non-volatile random access
memory (NVRAM) in a computer system to be uti-
lized as a memory alternative for a dynamic random
access memory (DRAM);

designate a second amount of the NVRAM to be utilized
as a storage alternative for a mass storage device;

during operation of the computer system, re-designate at
least a first portion of the first amount of NVRAM
from the memory alternative designation to the stor-
age alternative designation; and

during operation of the computer system, re-designate at
least a first portion of the second amount of NVRAM
from the storage alternative designation to the
memory alternative designation; and

a write buffer management hardware logic to

determine, for each page of a plurality of NVRAM
physical pages, whether each NVRAM physical page
is free to be written to, wherein a given NVRAM
physical page is free to be written to when the given
NVRAM physical page is not currently holding valid
data.

14. The device of claim 13, wherein the hardware control
logic is further operable to:

cycle through the entire first amount of NVRAM over a

first amount of time to be re-designated from the
memory alternative designation to the storage alterna-
tive designation, wherein the cycling comprises re-des-
ignation of each of a plurality of portions that make up
the entire first amount of NVRAM at each of a plurality
of segments of time the sum of the plurality of segments
comprising the first amount of time.

15. The device of claim 13, wherein the hardware control
logic is further operable to:

provide access to at least one physical location in the

NVRAM for a software application running on the com-
puter system through a remapping table.

16. The device of claim 15, wherein the remapping table
further comprises a memory remapping table, the memory
remapping table to translate at least a platform physical
address to a physical NVRAM address.

US 9,190,124 B2

21

17. The device of claim 15, wherein the remapping table
further comprises a storage remapping table, the storage
remapping table to translate at least a logical block address to
a physical NVRAM address.

18. The device of claim 15, wherein the remapping table
further comprises a memory and storage remapping table, the
memory and storage remapping table having at least a bit
associated with each table entry to determine whether the
table entry is designated for memory or storage space.

19. The device of claim 13, wherein the write buffer man-
agement hardware logic is further operable to:

determine, for each free NVRAM physical page of the

plurality of NVRAM physical pages, whether each free
NVRAM physical page is clean, wherein a given free
NVRAM physical page is clean when all stored bits in
the given free NVRAM physical page are set to one.

20. The device of claim 19, wherein the write buffer man-
agement hardware logic is further operable to:

clean at least one free NVRAM physical page from the

plurality of NVRAM physical pages, wherein the at least
one free NVRAM physical page to be cleaned comprises
a page of physical NVRAM with at least one stored bit
set to zero.

21. The device of claim 13, wherein the write buffer man-
agement hardware logic is further operable to:

provide a requestor, the requestor to request to write to a

page of NVRAM, one of a plurality of free NVRAM
physical pages that has not been cleaned when an inter-
face to the NVRAM is substantially idle; and

provide the requestor one of a plurality of free NVRAM

physical pages that has been cleaned when the interface
to the NVRAM is not substantially idle.

22. The device of claim 21, further comprising:

memory traffic monitoring hardware logic to monitor traf-

fic to and from the NVRAM interface to determine
whether the interface is substantially idle of traffic at any
given time.

23. The device of claim 13, further comprising:

ordering a set of transactions to the NVRAM based on an

NVRAM plane location of each transaction location,
wherein the ordering includes minimizing a number of
plane crossings between each of the set of transactions.

24. The device of claim 13, wherein the NVRAM com-
prises phase change memory and switch (PCMS) memory
technology.

25. A system, comprising:

a non-volatile random access memory (NVRAM);

a dynamic random access memory (DRAM);

a hardware control logic to

designate a first amount of the NVRAM in a computer
system to be utilized as a memory alternative for the
DRAM,;

designate a second amount of the NVRAM to be utilized
as a storage alternative for a mass storage device;

during operation of the computer system, re-designate at
least a first portion of the first amount of NVRAM
from the memory alternative designation to the stor-
age alternative designation; and

during operation of the computer system, re-designate at
least a first portion of the second amount of NVRAM
from the storage alternative designation to the
memory alternative designation; and

a write buffer management hardware logic to

determine, for each page of a plurality of NVRAM
physical pages, whether each NVRAM physical page
is free to be written to, wherein a given NVRAM

22

physical page is free to be written to when the given
NVRAM physical page is not currently holding valid

data.
26. The system of claim 25, wherein the hardware control

5 logic is further operable to:

cycle through the entire first amount of NVRAM over a
first amount of time to be re-designated from the
memory alternative designation to the storage alterna-
tive designation, wherein the cycling comprises re-des-

10 ignation of each of a plurality of portions that make up
the entire first amount of NVRAM at each of a plurality
of segments of time the sum of the plurality of segments
comprising the first amount of time.

s 27.The system of claim 25, wherein the hardware control

logic is further operable to:
provide access to at least one physical location in the
NVRAM for a software application running on the com-
puter system through a remapping table.

28. The system of claim 27, wherein the remapping table
further comprises a memory remapping table, the memory
remapping table to translate at least a platform physical
address to a physical NVRAM address.

29. The system of claim 27, wherein the remapping table
further comprises a storage remapping table, the storage
remapping table to translate at least a logical block address to
a physical NVRAM address.

30. The system of claim 27, wherein the remapping table
further comprises a memory and storage remapping table, the
memory and storage remapping table having at least a bit
associated with each table entry to determine whether the
table entry is designated for memory or storage space.

31. The system of claim 25, wherein the write buffer man-
agement hardware logic is further operable to:

determine, for each free NVRAM physical page of the

plurality of NVRAM physical pages, whether each free
NVRAM physical page is clean, wherein a given free
NVRAM physical page is clean when all stored bits in
the given free NVRAM physical page are set to one.

32. The system of claim 31, wherein the write buffer man-
agement hardware logic is further operable to:

clean at least one free NVRAM physical page from the

plurality of NVRAM physical pages, wherein the at least
one free NVRAM physical page to be cleaned comprises
a page of physical NVRAM with at least one stored bit
set to zero.

33. The system of claim 25, wherein the write buffer man-
agement hardware logic is further operable to:

provide a requestor, the requestor to request to write to a

page of NVRAM, one of a plurality of frere NVRAM
physical pages that has not been cleaned when an inter-
face to the NVRAM is substantially idle; and

provide the requestor one of a plurality of free NVRAM

physical pages that has been cleaned when the interface
to the NVRAM is not substantially idle.

34. The system of claim 33, further comprising:

memory traffic monitoring hardware logic to monitor traf-

fic to and from the NVRAM interface to determine
whether the interface is substantially idle of traffic at any
given time.

35. The system of claim 25, further comprising:

ordering a set of transactions to the NVRAM based on an

NVRAM plane location of each transaction location,
wherein the ordering includes minimizing a number of
plane crossings between each of the set of transactions.

20

25

30

35

40

45

55

60

65

US 9,190,124 B2

23

36. The system of claim 25, wherein the NVRAM com-
prises phase change memory and switch (PCMS) memory
technology.

24

